Abstract In this paper, alkyl groups with different lengths are introduced to the two-dimensional spindle-type chromophores as the steric isolators to improve the poling efficiency and long term stability of… Click to show full abstract
Abstract In this paper, alkyl groups with different lengths are introduced to the two-dimensional spindle-type chromophores as the steric isolators to improve the poling efficiency and long term stability of the poled polymers for second-order nonlinear optical materials. The structure and thermal properties of alkyl functionalized chromophores are characterized by the 1H NMR, FT-IR, UV–Vis, DSC, TGA et al. The chromophores with different alkyl groups present extremely similar maximum absorbance wavelength (480 nm), which means they have very similar first-order hyperpolarizability. Guest-host polymer doped with chromophores has been prepared. Those materials display different glass transition temperatures and good thermal stability. According to the electro-optic coefficients studies and poling efficiency results, chromophores with longer alkyl side chain groups exhibit better poling efficiency and larger electro-optic coefficients. Especially for the chromophores with octyl group, the poling efficiency increases up to 3 times compared to the reference chromophore 2-(3-{2,5-Phenylmethanol-4-[4-(dimethylamino)styryl]-styryl-5,5-dimethylcyclohex-2-enylidene)malononitrile (STC), while the corresponding electro-optic coefficient of the poled polymers increases up to 4 times, indicating a significant effect of the isolate groups on improving the poling efficiency.
               
Click one of the above tabs to view related content.