LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanical and light resistance of flexographic conductive ink films intended for printed electronics

Photo from wikipedia

Abstract The objective of the research is to investigate the mechanical and light resistance of two most common water-based and solvent inks with electrical properties printed on a paper substrate… Click to show full abstract

Abstract The objective of the research is to investigate the mechanical and light resistance of two most common water-based and solvent inks with electrical properties printed on a paper substrate with the use of flexographic laboratory devices. One of them is black carbon semi-conductive the other one silver and copper conductive ink. Different thicknesses of these inks are tested to light and rub resistance. The sheet conductance and sheet resistance of the ink layers exposed to destructive factors is presented. The innovation in this research is to compare the changes in the properties of these inks due to the aforementioned destructive factors. It is also shown how the ink film thickness impacts its conductive properties. Black carbon nanoparticle ink after being subjected to abrasion exhibits about 67% better electrical properties and 11 times as good colorimetric properties as ink based on silver and copper mixture. The light destructive agent of 36 h and the rub off process have a negligible impact on the colour changes of black carbon ink 1 and a noticeable impact on silver and copper ink 2. The innovative conclusion is that the sheet resistance parameter of both the inks tested increases due to artificial light ageing and the abrasion process.

Keywords: black carbon; light resistance; conductive ink; ink; mechanical light; resistance

Journal Title: Dyes and Pigments
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.