LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Organic-matter-rich shales of China

Photo from wikipedia

Abstract Organic-matter-rich shales are the main target rocks for unconventional oil and gas exploration and development across the world. In China, shale-gas geological resources are estimated as approximately 110 × 1012 m3, with… Click to show full abstract

Abstract Organic-matter-rich shales are the main target rocks for unconventional oil and gas exploration and development across the world. In China, shale-gas geological resources are estimated as approximately 110 × 1012 m3, with recoverable gas reserves of ca. 20 × 1012 m3. Recoverable shale-oil reserves are estimated as ca. 5 × 109 t. A total 35 important organic-matter-rich shale units have been recognized from Mesoproterozoic to Cenozoic strata across the entire China. These shales are categorized according to their origin under marine, marine–nonmarine transitional and lacustrine conditions. Shales of marine origin, with ca. 9 × 1012 m3 recoverable resources, dominate China's potential in terms of total volume of organic-carbon. Currently, the most favorable marine shales for oil and gas exploration are found in the Sichuan Basin within the lower Cambrian Qiongzhusi Formation and in the Wufeng-Longmaxi formations of uppermost Ordovician through lower Silurian. A fortuitous combination of of sea-level variations, of paleo-productivity, of tectonic activity causing development and migration of partially closed deep basin depocenters, and of sediment accumulation rates controlled the extensive deposition and distribution of organic-matter-rich shales in these Wufeng and Longmaxi formations. Organic-matter-rich shales in marine-nonmarine transitional facies associated with coal measures occur in North China within the Carboniferous and Permian, and in South China within the Permian. These Carboniferous-Permian organic-matter-rich shales are important source rocks for the gas fields in the Ordos and Sichuan Basins. Abundant organic-rich shales are also widely distributed within coal-bearing clastics and coal-measure shales of fluvial, lacustrine, and swamp facies in Upper Triassic to Middle Jurassic successions of many basins. Lacustrine organic-rich shales were deposited during the Permian through Neogene in various freshwater to saline lake settings. Lacustrine organic-matter-rich shales are the main oil source rocks in the Songliao, Bohai Bay, Ordos and Junggar basins. Lacustrine algae contributed to the rain of organic matter; and the preservation of organic matter and distribution of organic-rich shale was controlled by lake currents, water depth and oxygen-poor conditions, with enhanced preservation when buried by turbidity currents. Algal blooms were partly induced by trace nutrients from volcanic ash falls in all of these lacustrine basins. Seawater intrusion into the freshwater lake of the Songliao Basin promoted some episodes of black shales. Saline lacustrine basins, such as middle Permian Junggar Basin, contain organic-rich dolomite mudstone that mainly formed during hot climate conditions when the lakes had high salinity and stratified water columns that deprived the bottom waters of oxygen, thereby preserving massive amounts of organic matter. Laminated calcite-rich mudstone in the saline lacustrine settings formed in more brackish waters under stable warm conditions and weak biological activity. The modeling of the factors controlling the distribution of organic-matter-rich shales within China's basins is important for the exploration and development of unconventional oil and gas resources.

Keywords: gas; organic matter; rich shales; oil; matter; matter rich

Journal Title: Earth-Science Reviews
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.