LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantitative screening level assessment of human risk from PCBs released in glacial meltwater: Silvretta Glacier, Swiss Alps.

Photo by paipai90 from unsplash

Persistent organic pollutants (POPs) are entrained within glaciers globally, reemerging in many alpine ecosystems. Despite available data on POP flux from glaciers, a study of human health risk caused by… Click to show full abstract

Persistent organic pollutants (POPs) are entrained within glaciers globally, reemerging in many alpine ecosystems. Despite available data on POP flux from glaciers, a study of human health risk caused by POPs released in glacial meltwater has never been attempted. Glaciers in the European Alps house the largest known quantity of POPs in the Northern Hemisphere, presenting an opportunity for identification of potential risk in an endmember scenario case study. With methodology developed by the US Environmental Protection Agency (EPA), we provide a regional screening level human risk analysis of one class of POPs, polychlorinated-biphenyls (PCB) that have been measured in melt waters from the Silvretta Glacier in the Swiss Alps. Our model suggests the potential for both cancer and non-cancer impacts in residents with lifetime exposure to current levels of PCB in glacial meltwater and average consumption of local fish. For residents with an abbreviated 30-year exposure timeframe, the risk for cancer and non-cancer impacts is low. Populations that consume higher quantities of local fish are predicted to be at a greater risk, with risk to lifetime consumers higher by an order of magnitude. Based on the results of our screening study, we suggest that local government move to the next step within the risk assessment framework: local monitoring and management. Within the Alps, other glacial watersheds of a similar size and latitude may see comparable risk and our model framework can be adapted for further implementation therein.

Keywords: human risk; risk; screening level; glacial meltwater; released glacial

Journal Title: Ecotoxicology and environmental safety
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.