LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of phenol-induced ecotoxicity in two model ciliate species: Population growth dynamics and antioxidant enzyme activity.

Photo by thinkmagically from unsplash

The application of identical exposure dosages in different species generally leads to a limited understanding of dose-response patterns because of species-specific factors. To evaluate phenol-induced ecotoxicity, antioxidant enzyme activity and… Click to show full abstract

The application of identical exposure dosages in different species generally leads to a limited understanding of dose-response patterns because of species-specific factors. To evaluate phenol-induced ecotoxicity, antioxidant enzyme activity and population growth dynamics were compared in two model ciliates, the marine species Euplotes vannus and the freshwater species Paramecium multimicronucleatum. Dosage ranges of phenol exposure were based on tolerance limits of test ciliates as determined by their carrying capacity (K) and growth rate (r). When the exposure duration of phenol increased from 48 h to 96 h, the median effective dose (ED50) for P. multimicronucleatum decreased faster than that for E. vannus, and the ratio of the former to the latter declined from 2.75 to 0.30. When E. vannus was exposed to increasing concentrations of phenol (0-140 mg l-1), r rose initially and then dropped significantly at concentrations higher than 40 mg l-1, whereas K decreased linearly over the entire range. For P. multimicronucleatum, both r and K declined gradually over the range 0-200 mg l-1 phenol. Dose-response patterns of activities of three individual antioxidant enzymes, and the integrative index of the three enzymes, presented a biphasic (inverse U-shaped) curve at each of four durations of exposure, i.e. 12 h, 24 h, 36 h and 48 h. Cluster analyses and multidimensional scaling analyses of antioxidant enzyme activities revealed differences in the temporal succession of physiological states between the two model ciliates. In brief, combining ED50 with growth dynamic parameters is helpful for designing exposure dosages of toxicants in ecotoxicity tests.

Keywords: two model; phenol; antioxidant enzyme; ecotoxicity; growth

Journal Title: Ecotoxicology and environmental safety
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.