LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue using pulsed electric field in different enhancement agents.

Photo from wikipedia

Electrolytic manganese residue (EMR) is a solid waste generated in the process of producing electrolytic metal manganese and contains a lot of manganese and ammonia nitrogen. In this study, electrokinetic… Click to show full abstract

Electrolytic manganese residue (EMR) is a solid waste generated in the process of producing electrolytic metal manganese and contains a lot of manganese and ammonia nitrogen. In this study, electrokinetic remediation (EK) of manganese and ammonia nitrogen from EMR were carried out by using pulse electric field (PE) in different agents, and sodium dodecyl benzene sulfonate (SDBS), citric acid (CA) and ethylene diamine tetraacetic acid (EDTA) were used as enhancement agents. The removal behavior of ammonia nitrogen and manganese under direct current field (DC) and PE, and the relationship between manganese fractionation and transport behavior, as well as the energy consumption were investigated. The results demonstrated that the removal efficiency of ammonia nitrogen and manganese using PE were higher than DC. SDBS, EDTA and CA could enhance electroosmosis and electromigration, and the sequence of enhancement agent effects were CA, SDBS, EDTA, distilled water. The highest removal efficiency of manganese and ammonia nitrogen were 94.74% and 88.20%, and the effective removal amount of manganese and ammonia nitrogen was 23.93 and 1.48 mg·wh-1, when CA and SDBS+CA was used as the enhancement agents, respectively. Moreover, electromigration was the main removal mechanism of manganese and ammonia nitrogen in the EK process.

Keywords: field; manganese ammonia; ammonia; enhancement agents; ammonia nitrogen

Journal Title: Ecotoxicology and environmental safety
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.