LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cadmium stress increases antioxidant enzyme activities and decreases endogenous hormone concentrations more in Cd-tolerant than Cd-sensitive wheat varieties.

Photo from wikipedia

The different wheat varieties have different tolerance to cadmium stress, while the mechanisms underlying the Cd tolerance are still poorly understood. A pot experiment was conducted to study the changes… Click to show full abstract

The different wheat varieties have different tolerance to cadmium stress, while the mechanisms underlying the Cd tolerance are still poorly understood. A pot experiment was conducted to study the changes of antioxidant enzyme activities and endogenous hormones in wheat (Triticum aestivum) genotypes differing in cadmium (Cd) accumulation (low = Pingan 8 and high = Bainong 160) in different growth stages under Cd stress. The Cd treatment (3 mg/kg) increased the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) and concentrations of malondialdehyde (MDA) and abscisic acid (ABA); in contrast, it reduced the net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), intercellular carbon dioxide concentration (Ci) and the concentrations of gibberellin (GA3), auxin (IAA) and zeatin nucleoside (ZR) in wheat leaves compared to the CK (without Cd). The antioxidant enzyme activities were higher in Bainong 160 than Pingan 8 under Cd stress. In addition, the changes in endogenous hormone concentration were smaller in Bainong 160 than Pingan 8 leaves. The correlation coefficients of Bainong 160 and Pingan 8 were 0.87 and 0.66, respectively. Our results suggest that high Cd accumulation (greater Cd tolerance) in Bainong 160 is associated with higher photosynthetic parameters, higher activities of antioxidant enzyme and higher concentration of hormones than Pingan 8.

Keywords: wheat; enzyme activities; wheat varieties; bainong 160; stress; antioxidant enzyme

Journal Title: Ecotoxicology and environmental safety
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.