LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simultaneous optimizing removal of manganese and ammonia nitrogen from electrolytic metal manganese residue leachate using chemical equilibrium model.

Photo from wikipedia

Electrolytic metal manganese residue leachate (EMMRL) was produced from long-term deposition of electrolytic metal manganese residue. EMMRL contains huge amount of manganese and ammonia nitrogen which could seriously damage the… Click to show full abstract

Electrolytic metal manganese residue leachate (EMMRL) was produced from long-term deposition of electrolytic metal manganese residue. EMMRL contains huge amount of manganese and ammonia nitrogen which could seriously damage the ecological environment. In this study, a chemical equilibrium model-Visual MINTEQ was used to simultaneously optimize removal of manganese and ammonia nitrogen from EMMRL with chemical precipitation methods. In the laboratory experiment, the effect of different N: P ratios and pH were investigated, and the characterization of the precipitates was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). The results showed that over 99.9% manganese and 96.2% ammonia nitrogen were simultaneously removed, respectively, when molar ratio of N:P was 1:1.15 at pH 9.5. Moreover, the experimental results corresponded well with the model outputs with respect to ammonia nitrogen and manganese removal. Manganese was mainly removed in the form of MnHPO4ยท3H2O and manganite, and ammonia nitrogen was mainly removed in the form of struvite. Economic evaluation indicated the chemical precipitation methods can be applied in the factory when the price of precipitation was higher than 0.295 $/kg.

Keywords: electrolytic metal; manganese ammonia; metal manganese; ammonia; ammonia nitrogen

Journal Title: Ecotoxicology and environmental safety
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.