Pollution generated by deposition of industrial activity waste in the environment without due care can lead to serious environmental consequences. Bioassays in higher plants are means of understanding the cytogenotoxic… Click to show full abstract
Pollution generated by deposition of industrial activity waste in the environment without due care can lead to serious environmental consequences. Bioassays in higher plants are means of understanding the cytogenotoxic effects of these substances. In the present work, Allium cepa L. was used as a model species to assess nucleolar changes induced by environmental pollutants. The substances used were Methyl Methane Sulfonate (MMS), cadmium (Cd), Spent Potliner (SPL) and the herbicide Atrazine. Water was used as a negative control. The silver-stained nucleolar organizer region (AgNOR) assay was used making it possible to evaluate how nucleolar parameters (number of nucleoli per nucleus and nucleoli area) behave when facing stress caused by such pollutants. The results obtained showed a variation in the observed parameters: an increase in the number of nucleoli in the treated cells and tendency to a reduction in nucleolar area, indicating that the tested pollutants may have impaired nucleolar activity. In addition, it was possible to establish a relationship between the behavior of the nucleolus with other changes as plantlet growth, cell proliferation, and DNA damage.
               
Click one of the above tabs to view related content.