LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigating the effect of biochar on the potential of increasing cotton yield, potassium efficiency and soil environment.

Photo from wikipedia

Potassium (K) is an essential macronutrient for plant growth and development. However, in China, available K is relatively low in the soil, and with the extensive use of chemical fertilizer,… Click to show full abstract

Potassium (K) is an essential macronutrient for plant growth and development. However, in China, available K is relatively low in the soil, and with the extensive use of chemical fertilizer, K use efficiency is constantly reducing, and consequently increasing the potential risk of environmental pollution and economic loss. Therefore, it is essential to reduce the negative impact of over-fertilization on the environment to obtain optimal crop yield. Biochar as a soil amendment has been applied to improve soil fertility and increase crop yield. However, the effects of successive biochar application on cotton yield, agronomy efficiencies and potash fertilizer reduction are not well documented. Our results of a pot experiment showed that the application of 1% biochar to soil under different K levels significantly improved dry mass accumulation and K content of different plant parts, and increased the number of buds, bolls and effective branches of cotton. Particularly, plants treated with 150 mg/kg K2O and 1% biochar had the highest growth parameters. The most important characteristics including the harvest index, K fertilizer contribution index, partial factor productivity, agronomic efficiency and apparent recovery efficiency of K under C1 (1% biochar) were generally greater than those under C0 (without biochar). The 75 mg/kg K2O application was optimal to produce the highest yield with 1% biochar, demonstrating that biochar can increase cotton yield and therefore, reduces chemical K fertilizer application and alleviates agricultural environment risks of chemical fertilizer.

Keywords: fertilizer; biochar; yield; cotton yield; soil; efficiency

Journal Title: Ecotoxicology and environmental safety
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.