LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Genome-wide alternative polyadenylation dynamics in response to biotic and abiotic stresses in rice.

Photo by kellysikkema from unsplash

Alternative polyadenylation (APA) is an important way to regulate gene expression at the post-transcriptional level, and is extensively involved in plant stress responses. However, the systematic roles of APA regulation… Click to show full abstract

Alternative polyadenylation (APA) is an important way to regulate gene expression at the post-transcriptional level, and is extensively involved in plant stress responses. However, the systematic roles of APA regulation in response to abiotic and biotic stresses in rice at the genome scale remain unknown. To take advantage of available RNA-seq datasets, using a novel tool APAtrap, we identified thousands of genes with significantly differential usage of polyadenylation [poly(A)] sites in response to the abiotic stress (drought, heat shock, and cadmium) and biotic stress [bacterial blight (BB), rice blast, and rice stripe virus (RSV)]. Genes with stress-responsive APA dynamics commonly exhibited higher expression levels when their isoforms with short 3' untranslated region (3' UTR) were more abundant. The stress-responsive APA events were widely involved in crucial stress-responsive genes and pathways: e.g. APA acted as a negative regulator in heat stress tolerance; APA events were involved in DNA repair and cell wall formation under Cd stress; APA regulated chlorophyll metabolism, being associated with the pathogenesis of leaf diseases under RSV and BB challenges. Furthermore, APA events were found to be involved in glutathione metabolism and MAPK signaling pathways, mediating a crosstalk among the abiotic and biotic stress-responsive regulatory networks in rice. Analysis of large-scale datasets revealed that APA may regulate abiotic and biotic stress-responsive processes in rice. Such post-transcriptome diversities contribute to rice adaption to various environmental challenges. Our study would supply useful resource for further molecular assisted breeding of multiple stress-tolerant cultivars for rice.

Keywords: stress responsive; rice; response; apa; polyadenylation; stress

Journal Title: Ecotoxicology and environmental safety
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.