LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A second intracellular copper/zinc superoxide dismutase and a manganese superoxide dismutase in Oxya chinensis: Molecular and biochemical characteristics and roles in chlorpyrifos stress.

Photo by elisa_ventur from unsplash

A second intracellular copper/zinc superoxide dismutase (icCuZnSOD2) and manganese SOD (MnSOD) were cloned and characterized in Oxya chinensis. The open reading frame (ORF) of OcicCuZnSOD2 and OcMnSOD are 462 and… Click to show full abstract

A second intracellular copper/zinc superoxide dismutase (icCuZnSOD2) and manganese SOD (MnSOD) were cloned and characterized in Oxya chinensis. The open reading frame (ORF) of OcicCuZnSOD2 and OcMnSOD are 462 and 672 bp encoding 153 and 223 amino acids, respectively. OcicCuZnSOD2 contains two signature sequences, one potential N-glycosylation site, and seven copper/zinc binding sites. OcMnSOD includes a mitochondria targeting sequence of 7 amino acids at N-terminal, one signature sequence, two N-glycosylation sites, and four manganese binding sites. The secondary structure and homology model of OcicCuZnSOD2 include nine β sheets, two Greek-key motifs, and one electrostatic loop. OcMnSOD contains nine α-helices and three β-sheets. Phylogenetic analysis shows that OcMnSOD is evolutionarily conserved while OcicCuZnSOD2 may be gene duplication and is paralogous to OcicCuZnSOD1. OcMnSOD expressed widely in all tissues and developmental stages. OcicCuZnSOD2 showed testis-specific expression and expressed highest in the 5th-instar nymph and the adult. The optimum temperatures and pH values of the recombinant OcicCuZnSOD2 and OcMnSOD were 40 °C and 8.0. They were stable at 25-55 °C and at pH 5.0-12.0 and pH 6.0-12.0, respectively. The activity and mRNA expression of each OcSOD were assayed after chlorpyrifos treatments. Total SOD and CuZnSOD activities first increased then declined under chlorpyrifos stress. Chlorpyrifos induced the mRNA expression and activity of OcMnSOD as a dose-dependent manner and inhibited OcicCuZnSOD2 transcription. The role of each OcSOD gene in chlorpyrifos stress was investigated using RNAi and disc diffusion assay with Escherichia coli overexpressing OcSOD proteins. Silencing of OcMnSOD significantly increased ROS content in chlorpyrifos-exposed grasshoppers. Disc diffusion assay showed that the plates with E. coli overexpressing OcMnSOD had the smaller inhibition zones around the chlorpyrifos-soaked filter discs. These results implied that OcMnSOD played a significant role in defense chlorpyrifos-induced oxidative stress.

Keywords: copper zinc; chlorpyrifos stress; dismutase; superoxide dismutase

Journal Title: Ecotoxicology and environmental safety
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.