LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Neurotoxicity of Mn3O4 nanoparticles: Apoptosis and dopaminergic neurons damage pathway.

Photo from archive.org

Mn3O4 nanoparticles (NPs) are used increasingly in various fields due to their excellent physiochemical properties. Previous studies have documented that Mn-based nanomaterials resulted in excess reactive oxygen species (ROS) generation… Click to show full abstract

Mn3O4 nanoparticles (NPs) are used increasingly in various fields due to their excellent physiochemical properties. Previous studies have documented that Mn-based nanomaterials resulted in excess reactive oxygen species (ROS) generation and dopamine (DA) reduction both in vivo and in vitro experiments. However, little is known about the mechanism of ROS production and DA decrease induced by Mn-based nanomaterials. The present study was carried out to elucidate the mechanism of the co-incubation model of dopaminergic neuron PC12 cells and the synthesized Mn3O4 NPs. The results demonstrated that exposure to Mn3O4 NPs reduced cell viability, increased level of lactate dehydrogenase (LDH), triggered oxidative stress and induced apoptosis. Notably, the level of ROS was remarkably increased (>10-fold) with Mn3O4 NPs exposure. We also found that mitochondrial calcium Ca2+ uniporter (MCU) was up-regulated and the mitochondrial Ca2+ concentration ([Ca2+]mito) increased induced by Mn3O4 NPs in PC12 cells. Furthermore, the MCU inhibitor RuR significantly attenuated Mn3O4 NPs-induced [Ca2+]mito, ROS production and apoptosis. In PC12 cells, the decrease of DA content was mainly due to the downregulation of DOPA decarboxylase (DDC) expression caused by Mn3O4 NPs treatment. The expression of proteins related to DA storage system was not significantly affected by treatment.

Keywords: pc12 cells; mn3o4 nanoparticles; mn3o4 nps; neurotoxicity mn3o4; mn3o4; ca2

Journal Title: Ecotoxicology and environmental safety
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.