LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tissue concentrations, trophic transfer and human risks of antibiotics in freshwater food web in Lake Taihu, China.

Photo from wikipedia

The objective of this study was to evaluate the tissue distributions of antibiotics in the fish, the bioaccumulation and trophic transfer in freshwater food web in Taihu Lake, a large… Click to show full abstract

The objective of this study was to evaluate the tissue distributions of antibiotics in the fish, the bioaccumulation and trophic transfer in freshwater food web in Taihu Lake, a large shallow freshwater lake. Twenty four out of 41 antibiotics were detected in the biotas of the food web; and antibiotic concentrations followed the orders: fish plasma ~ fish muscle < fish liver ~ fish bile and fish < invertebrates ~ plankton. Antibiotic concentrations in the liver of piscivores were higher than those in omnivores and planktivores. Most bioaccumulation factors (BAFs) of sulfonamides (SAs), macrolides (MLs), ionophores (IPs) and lincomycin (LIN) were less than 2000 L/kg, indicating low bioaccumulation ability of these compounds in fish. Fluoroquinolones (FQs) were frequently detected in fish liver, invertebrates and plankton with much of BAFs great than 5000 L/kg, indicating that FQs have the potential of bioaccumulation in fish. Relationship analysis between BAFs and physicochemical properties of antibiotics showed that the bioaccumulation of antibiotics in the biota was related with their adsorption ability. Generally, the antibiotics in the food web of Lake Taihu including plankton, invertebrates and fish showed trophic dilution. The normalized estimated daily intake (EDI) values are less than the acceptable daily intake (ADI) values, and then hazard quotients were much less than 1. This result suggests the consumption of fish, crab and shrimp in Lake Taihu would probably not pose direct detrimental effects on humans.

Keywords: lake taihu; food web; trophic transfer; freshwater food; food; bioaccumulation

Journal Title: Ecotoxicology and environmental safety
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.