LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of hematite on the stabilization of copper, cadmium and phosphorus in a contaminated red soil amended with hydroxyapatite.

Photo from wikipedia

Iron (Fe) oxides are intimately coupled with phosphorus and closely associated with the bioavailability of potential toxic elements (PTEs) in soil. Thus, Fe oxides may influence the stabilization of PTEs… Click to show full abstract

Iron (Fe) oxides are intimately coupled with phosphorus and closely associated with the bioavailability of potential toxic elements (PTEs) in soil. Thus, Fe oxides may influence the stabilization of PTEs in contaminated soils amended by phosphorus. To evaluate the effects of hematite (HMT) on the stabilization of PTEs, 1-5% (by weight) of HMT was added into a contaminated red soil amended with hydroxyapatite (HAP) to simulate naturally occurring Fe oxides. The stabilization efficiencies of soil copper (Cu) and cadmium (Cd) amended with HAP in soils with low, moderate, and high content of HMT were assessed after a 60-day incubation. HAP treated the soil with high rate HMT decreased the CaCl2-extractable and acid-soluble fractions of Cu and Cd than that of HAP alone. In particular, CaCl2-extactable Cu and Cd in the soil with 5% HMT amended by HAP were 91-95% and 41-68% lower than those amended with only HAP. High content of HMT in soil could decrease the concentration of labile phosphorus in the presence of HAP, but it did not increase the concentration of NaOH-extractable inorganic phosphorus (the fraction bound to Fe oxides). The concentrations of free and crystalline Fe oxides were significantly increased by adding high dosages of HMT with or without HAP. High content of HMT in soil amended by HAP reduced metal phytotoxicity and uptake by wheat shoots than the soil containing HAP without HMT. The results indicate that HMT can promote Cu and Cd stabilization while decrease labile phosphorus in red soil amended with HAP, suggesting that phosphorus-based amendments combined with Fe oxides can be used to stabilize PTEs in contaminated red soils.

Keywords: stabilization; hap; phosphorus; soil; contaminated red; soil amended

Journal Title: Ecotoxicology and environmental safety
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.