LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bioremediation potential of select bacterial species for the neonicotinoid insecticides, thiamethoxam and imidacloprid.

Photo from wikipedia

Thiamethoxam (THM) and imidacloprid (IMI), are environmentally persistent neonicotinoid insecticides which have become increasingly favored in the past decade due to their specificity as insect neurotoxicants. However, neonicotinoids have been… Click to show full abstract

Thiamethoxam (THM) and imidacloprid (IMI), are environmentally persistent neonicotinoid insecticides which have become increasingly favored in the past decade due to their specificity as insect neurotoxicants. However, neonicotinoids have been implicated as a potential contributing factor in Colony Collapse Disorder (CCD) which affects produce production on a global scale. The present study characterizes the bioremediation potential of six bacterial species: Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas aeruginosa, Alcaligenes faecalis, Escherichia coli, and Streptococcus lactis. In Phase I, we evaluated the utilization of IMI or THM as the sole carbon or nitrogen source by P. fluorescens, P. putida, and P. aeruginosa. All three species were better able to utilize THM over IMI as their sole carbon or nitrogen source. Thus, further studies proceeded with THM only. In Phase II, we assessed the kinetics of THM removal from aqueous media by the six species. Significant (p < 0.0001) reductions in 70 mg/L THM concentration were observed for P. fluorescens (67%), P. putida (65%), P. aeruginosa (52%), and A. faecalis (39%) over the 24-day study period, and for E. coli (60%) and S. lactis (12%) over the 14-day study period. The THM removal by all species followed a first-order kinetic reaction. HPLC chromatograms of P. fluorescens, P. putida, and E. coli cultures revealed that as the area of the THM peak decreased over time, the area of an unidentified metabolite peak increased. In Phase III, we examined the effect of temperature on the transformation capacity of the bacterial species which was observed at 2 ℃, 22 ℃, and 30 ℃. Maximal THM removal occurred at 30 °C for all bacterial species assessed. Identification of the metabolite is currently underway. If the metabolite is found to be less hazardous than THM, further testing will follow to evaluate the use of this bioremediation technique in the field.

Keywords: bacterial species; neonicotinoid insecticides; bioremediation potential; fluorescens putida; thm

Journal Title: Ecotoxicology and environmental safety
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.