Caenorhabditis elegans is a well-established model organism for toxicity testing of chemical substances. We recently demonstrated its potential for bioanalysis of the toxic potency of chemical contaminants in water. While… Click to show full abstract
Caenorhabditis elegans is a well-established model organism for toxicity testing of chemical substances. We recently demonstrated its potential for bioanalysis of the toxic potency of chemical contaminants in water. While many detoxification genes are homologues to those in mammalians, C. elegans is reported to be deficient in cytochrome CYP1-like P450 metabolism and that its aryl hydrocarbon receptor (AhR) homolog encoded by ahr-1 purportedly does not interact with dioxins or any other known xenobiotic ligand. This suggests that C. elegans is insensitive for compounds that require bioactivation (indirectly acting compounds) and for dioxins or dioxin-like compounds. This study analysed genome-wide gene expression of the nematode in response to 30 μM of aflatoxin B1 (AFB1), benzo(a)pyrene (B(a)P), Aroclor 1254 (PCB1254), and 10 μM of 2,3,7,8-tetrachlorodibenzodioxin (TCDD). After 24 h of exposure in the early L4 larval stage, microarray analysis revealed 182, 86, and 321 differentially expressed genes in the nematodes treated with 30 μM of AFB1, B(a)P, and PCB1254, respectively. Among these genes, many encode xenobiotic-metabolizing enzymes, and their transcription levels were among the highest-ranked fold-changed genes. Interestingly, only one gene (F59B1.8) was upregulated in the nematodes exposed to 10 μM TCDD. Genes related to metabolic processes and catalytic activity were the most induced by exposure to 30 μM of AFB1, B(a)P, and PCB1254. Despite the genotoxic nature of AFB1 and B(a)P, no differential expression was found in the genes encoding DNA repair and cell cycle checkpoint proteins. Analysis of concentration-response curves was performed to determine the Lowest Observed Transcriptomic Effect Levels (LOTEL) of AFB1, B(a)P, and PCB1254. The obtained LOTEL values showed that gene expression changes in C. elegans are more sensitive to toxicants than reproductive effects. Overall, transcriptional responses of metabolic enzymes suggest that the nematode does metabolize AFB1, B(a)P, and PCB1254. Our findings also support the assumption that the transcription factor AhR homolog in C. elegans does not bind typical xenobiotic ligands, rendering the nematode transcriptionally insensitive to TCDD effects.
               
Click one of the above tabs to view related content.