Abstract Near-saturated hydraulic properties are the key parameters for water transport models in the unsaturated zone and essential for management practices. This study was conducted to compare efficacy of multiple… Click to show full abstract
Abstract Near-saturated hydraulic properties are the key parameters for water transport models in the unsaturated zone and essential for management practices. This study was conducted to compare efficacy of multiple linear regression (MLR) and hybrid method of genetic algorithm with artificial neural network (GA-ANN) for prediction of near-saturated soil hydraulic properties in Moghan plain, north-western Iran. The results of MLR analysis indicated that this method had low potential to predict near-saturated soil hydraulic properties in the study area, which only could explain 14–38% of variability in the studied properties. Otherwise, GA-ANN was much higher powerful that could explain about 35–80% of total variability in the mentioned properties in the study area. The results of sensitivity analysis suggest that soil particle size distribution, organic matter, electrical conductivity and relative bulk density were the most crucial with variety of priorities for explaining variability of the near-saturated soil hydraulic properties in the study area in the semiarid region. In overall, it was concluded that application of intelligent system using the easily available soil properties as predictors could provide reliable estimates of near-saturated soil hydraulic properties at the filed scale.
               
Click one of the above tabs to view related content.