LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-dimensional habitat vegetation restoration mode for lake riparian zone, Taihu, China

Photo from wikipedia

Abstract The riparian zones that were surround bodies of fresh water have been extensively degraded by human influence. Their restoration strength and management are an issue of urgent. Particularly, the… Click to show full abstract

Abstract The riparian zones that were surround bodies of fresh water have been extensively degraded by human influence. Their restoration strength and management are an issue of urgent. Particularly, the knowledge based for the restoration of riparian zone has expanded in recent years. However, progress on a global scale has been limited, because little is known about its complex and diverse functions and structures. A national ecological restoration project of Taihu Lake (China) provided a case study for classifying and restoring the riparian zone. In this work, we quantified the classification of riparian zone, vegetation-zone in the ecotones and a recommended suite of introduced riparian vegetation communities. Taking the structures of the ecotones, soil conditions, vegetation configurations, and anthropogenic disturbances into account, six types of vegetation-zone were used to classify riparian zone, which are as follow: reefs, islands, dokdo–island, island–shore, dike–shore, and shoreland. Then a multi-dimensional habitat vegetation restoration mode for each type based on six vegetation-zones were also recommended. The water ecological quality was developed to a healthy state under this implement. Therefore, results suggest that profound division of habitat-vegetation is important in the modern ecological engineering theories for riparian zone. In order to provide a key parameter for Taihu Lake and other worldwide lakes with similar characteristics, an eco-restoration model and a reconstruction scheme for the vegetation community have been presented. In a conclusion, these recommendations could largely assist further development for lake management.

Keywords: habitat vegetation; zone; riparian zone; restoration; vegetation

Journal Title: Ecological Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.