LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Odonata (Insecta) as a tool for the biomonitoring of environmental quality

Photo from wikipedia

Abstract Despite the fundamental dependence of human populations on water resources, a range of anthropogenic impacts, in particular the removal of riparian vegetation, threaten freshwater environments. One of the most… Click to show full abstract

Abstract Despite the fundamental dependence of human populations on water resources, a range of anthropogenic impacts, in particular the removal of riparian vegetation, threaten freshwater environments. One of the most effective means of evaluating the effects of anthropogenic disturbance in aquatic ecosystems is the use of bioindicators, and the insects of the order Odonata are among the most efficient indicators, due to their enormous sensitivity to environmental changes. In this context, the present study aimed to verify which parameters of the odonate community (species richness, abundance/biomass, composition, taxonomic diversity and taxonomic/phylogenetic distinctness) are most effective for the evaluation of the loss of environmental integrity. The study focused on 50 streams in the northeast of the Brazilian state of Para. The streams were sampled during the dry season, between June and August 2011. The physical characteristics of each stream were evaluated using a Habitat Integrity Index (HII). The species composition provided the best parameter for the evaluation of ecological integrity, providing a relatively accurate assessment at a lower mean research cost than other parameters. Taxonomic diversity and distinctness also provided relatively reliable results, contributed additional information on the evolutionary relationships among the odonate taxa, and also provided a low-cost approach. Deconstructing communities is necessary to detect impacts, considering the considerable variation in the environmental requirements of the different species. Overall, the parameter that best responded to gradients of disturbance was species composition, followed by diversity and taxonomic distinctness. Given these findings, odonate-based biomonitoring should focus on these parameters to guarantee the optimal detection and evaluation of habitat alterations.

Keywords: odonata insecta; insecta tool; environmental quality; biomonitoring environmental; composition; tool biomonitoring

Journal Title: Ecological Indicators
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.