LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A dynamic energy budget (DEB) model to describe population dynamics of the marine cyanobacterium Prochlorococcus marinus

Photo by mbrunacr from unsplash

Small but numerically dominant species such as the cyanobacteria Prochlorococcus play a pivotal role in major nutrient cycles. To understand how Prochlorococcus populations affect nutrient flows, we present and analyze… Click to show full abstract

Small but numerically dominant species such as the cyanobacteria Prochlorococcus play a pivotal role in major nutrient cycles. To understand how Prochlorococcus populations affect nutrient flows, we present and analyze two alternative population models. These models − one including over-shading effects and one not − are based on Dynamic Energy Budget (DEB) theory to describe how growth may be affected by the availability of CO2 and/or inorganic nutrients and by changes in light conditions. In these models individuals have reserves for C, N, and P from which fluxes for maintenance and growth are mobilized. Time series data from laboratory studies of growth under three different nutrient concentrations are used to calibrate the models. The model with carbon, nitrogen and phosphate as limiting factors can reasonably describe the growth in the low N and low P media experiments, while the model with over-shading gives a proper description of the growth under all tested experimental conditions. Modeled C:N:P ratios are within range of reported in scientific literature ones and similar to measured ratios. The results suggest that (1) reserves play a critical role for cyanobacteria to thrive under the often oligotrophic conditions in which they live, and (2) over-shading has a considerable effect as co-limiting factor on the growth of cyanobacteria. We argue that an individual DEB-based model in which multiple nutrient limitations are presented can be used to successfully describe cyanobacterium growth patterns in batch cultures.

Keywords: growth; energy budget; budget deb; deb; dynamic energy; population

Journal Title: Ecological Modelling
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.