LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantile estimation of stochastic frontier models with the normal–half normal specification: A cumulative distribution function approach

Photo from wikipedia

Abstract In this paper, based on the cumulative distribution function (CDF) method (Jradi et al., 2021) for finding the optimal quantile when estimating stochastic frontier models (SFM) with normal–exponential composite error… Click to show full abstract

Abstract In this paper, based on the cumulative distribution function (CDF) method (Jradi et al., 2021) for finding the optimal quantile when estimating stochastic frontier models (SFM) with normal–exponential composite error term, we derive an expression to find the optimal quantile for the SFM with normal–half normal composite error term. We then use Monte-Carlo simulations and the same data set as Jradi et al. (2019) to compare the difference of iteration method (Jradi et al., 2019) and CDF method for the SFM with normal–half normal specification. The simulations and empirical application illustrate that both methods work well.

Keywords: stochastic frontier; cumulative distribution; frontier models; normal half; half normal; distribution function

Journal Title: Economics Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.