Abstract To avoid information loss or measurement error in traditional methods dealing with mixed frequency data, we develop a novel mixed data sampling expectile regression (MIDAS-ER) model to measure financial… Click to show full abstract
Abstract To avoid information loss or measurement error in traditional methods dealing with mixed frequency data, we develop a novel mixed data sampling expectile regression (MIDAS-ER) model to measure financial risk. We construct the MIDAS-ER model by introducing a MIDAS structure into expectile regressions. This enables us to perform an expectile regression on raw mixed frequency data directly. We apply the proposed MIDAS-ER model to estimate two popular financial risk measures, namely, Value at Risk and Expected Shortfall, with both simulated data and four stock indices, and compare the model's performance with those of several popular models. The outstanding performance of our model demonstrates that high-frequency information helps to improve the accuracy of risk measurement. In addition, the numerical results also imply that our model can be a significant tool for risk-averse investors to control risk losses and for financial institutions to implement robust risk management.
               
Click one of the above tabs to view related content.