LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Using diverse sensors in load forecasting in an office building to support energy management

Photo from wikipedia

Abstract The increasing penetration of renewable energy sources led to the development of several energy management approaches. One of the main topics in this field is related to the load… Click to show full abstract

Abstract The increasing penetration of renewable energy sources led to the development of several energy management approaches. One of the main topics in this field is related to the load forecast in buildings, which can contribute to more intelligent and sustainable energy consumption. However, it is necessary to build a proper forecast model, capable of detecting an accurate consumption profile. The minimum effort to achieve this is to extract a historic with energy consumptions to use as input. Additional information should be considered in order to achieve improvements in forecasting results. This way, information regarding the day of the week is discussed as a reliable source of information that may enhance the load forecast. In this paper, two forecasting techniques, namely neural networks and support vector machine, are used to predict the energy consumption of a building for all 5 min from a period. The proposed model finds the best forecasting technique and determines if the additional information regarding the day of the week enhances the load forecast. In this case study, a period of two years and a half data with a 5-minute time interval is used. Moreover, several tests are performed for varied inputs to understand if the insights are consistent for these tests. This data has been adapted from an office building to illustrate the advantages of the proposed methodology.

Keywords: information; energy; energy management; office building; support

Journal Title: Energy Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.