Abstract Distribution utilities aim to operate and plan their network in a secure and economical way. The prime focus of this work is to assist utilities by developing a new… Click to show full abstract
Abstract Distribution utilities aim to operate and plan their network in a secure and economical way. The prime focus of this work is to assist utilities by developing a new integrated approach which considers the impacts of system reliability in distribution system planning (DSP). This approach merges different problems together and solves them in a two-stage process, as follows: 1. cable routing and optimal location and number of switching devices (circuit breakers and reclosers); 2. optimal location and number of tie switches. Moreover, the possibility of installing different cable options, with different prices and capacities, is included. The optimization algorithm is designed using mixed-integer programming (MIP). The developed algorithm analytically evaluates relationships between different components in the system and dynamically updates reliability indices, failure rate and restoration time, of every node in the system. This approach has been tested on two distribution systems. Despite the complexity and the exhaustiveness of the problem, MIP converges and provides the optimal solution for every studied scenario. The results show that an integrated approach enables utilities to obtain more comprehensive solutions. Moreover, by understanding the impact of parameter variation enables utilities to categorize their priorities in the decision making process and optimally invest in distribution network with respect to reliability.
               
Click one of the above tabs to view related content.