LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Metabolic engineering strategies for caffeic acid production in Escherichia coli

Photo from wikipedia

Caffeic acid (CA; 3,4-dihydroxycinnamic acid) is an aromatic compound obtained by the phenylpropanoid pathway. This natural product has antioxidant, antitumor, antiviral, and anti-inflammatory activities. It is also a precursor of… Click to show full abstract

Caffeic acid (CA; 3,4-dihydroxycinnamic acid) is an aromatic compound obtained by the phenylpropanoid pathway. This natural product has antioxidant, antitumor, antiviral, and anti-inflammatory activities. It is also a precursor of CA phenethyl ester (CAPE), a compound with potential as an antidiabetic and liver-protective agent. CA can be found at low concentrations in plant tissues, and hence, its purification is difficult and expensive. Knowledge regarding the pathways, enzymes, and genes involved in CA biosynthesis has paved the way for enabling the design and construction of microbial strains with the capacity of synthesizing this metabolite. In this review, metabolic engineering strategies for the generation of Escherichia coli strains for the biotechnological production of CA are presented and discussed.

Keywords: engineering strategies; production; escherichia coli; metabolic engineering; caffeic acid

Journal Title: Electronic Journal of Biotechnology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.