LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recurrent Neural Network-based Internal Model Control design for stable nonlinear systems

Photo from wikipedia

Owing to their superior modeling capabilities, gated Recurrent Neural Networks, such as Gated Recurrent Units (GRUs) and Long Short-Term Memory networks (LSTMs), have become popular tools for learning dynamical systems.… Click to show full abstract

Owing to their superior modeling capabilities, gated Recurrent Neural Networks, such as Gated Recurrent Units (GRUs) and Long Short-Term Memory networks (LSTMs), have become popular tools for learning dynamical systems. This paper aims to discuss how these networks can be adopted for the synthesis of Internal Model Control (IMC) architectures. To this end, first a gated recurrent network is used to learn a model of the unknown input-output stable plant. Then, a controller gated recurrent network is trained to approximate the model inverse. The stability of these networks, ensured by means of a suitable training procedure, allows to guarantee the input-output closed-loop stability. The proposed scheme is able to cope with the saturation of the control variables, and can be deployed on low-power embedded controllers, as it requires limited online computations. The approach is then tested on the Quadruple Tank benchmark system and compared to alternative control laws, resulting in remarkable closed-loop performances.

Keywords: recurrent neural; internal model; model; network; gated recurrent; control

Journal Title: European Journal of Control
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.