LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Oxadiazole-substituted naphtho[2,3-b]thiophene-4,9-diones as potent inhibitors of keratinocyte hyperproliferation. Structure-activity relationships of the tricyclic quinone skeleton and the oxadiazole substituent.

Photo by yapics from unsplash

Novel analogues of oxadiazole-substituted naphtho[2,3-b]thiophene-4,9-diones were synthesized in which the tricyclic quinone skeleton was systematically replaced with simpler moieties, such as structures with fewer rings and open-chain forms, while the… Click to show full abstract

Novel analogues of oxadiazole-substituted naphtho[2,3-b]thiophene-4,9-diones were synthesized in which the tricyclic quinone skeleton was systematically replaced with simpler moieties, such as structures with fewer rings and open-chain forms, while the oxadiazole ring was maintained. In addition, variants of the original 1,2,4-oxadiazole ring were explored. Overall, the complete three-ring quinone was essential for potent suppression of human keratinocyte hyperproliferation, whereas analogous anthraquinones were inactive. Also, the oxadiazole ring per se was not sufficient to elicit activity. However, rearrangement of the heteroatom positions in the oxadiazole ring resulted in highly potent inhibitors with compound 24b being the most potent analogue of this series showing an IC50 in the nanomolar range. Furthermore, experiments in isolated enzymatic assays as well as in the keratinocyte-based hyperproliferation assay did not support a major role of redox cycling in the mode of action of the compounds.

Keywords: hyperproliferation; naphtho thiophene; substituted naphtho; tricyclic quinone; oxadiazole substituted; thiophene diones

Journal Title: European journal of medicinal chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.