LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modification of C-seco taxoids through ring tethering and substituent replacement leading to effective agents against tumor drug resistance mediated by βIII-Tubulin and P-glycoprotein (P-gp) overexpressions.

Photo by schluditsch from unsplash

In our efforts to improve the efficacy of taxane-based microtubule (MT) stabilizing agents against tumor drug resistance mediated by multiple mechanisms, two clinically relevant factors were focused: i.e., P-glycoprotein and… Click to show full abstract

In our efforts to improve the efficacy of taxane-based microtubule (MT) stabilizing agents against tumor drug resistance mediated by multiple mechanisms, two clinically relevant factors were focused: i.e., P-glycoprotein and βIII-tubulin overexpression. Based on the structure of C-seco taxoid 1 m (IDN5390) which was believed to more selectively interact with βIII-tubulin than paclitaxel, we prepared a series of C-seco taxoids bearing various 7,9-O-linkages and/or different substituents at C2 and C3' positions. Some of them exhibited much more potent binding affinity to MTs and cytotoxicity than their C-seco parent compounds in drug resistant cells with both mechanisms. SAR analysis indicated that C2 modifications significantly enhanced MT binding but brought ambiguous influence to cytotoxicity whereas 7,9-linkage and C3' modifications enhance cytotoxicity more efficiently than improve MT binding. These observations illustrate a better translation of molecular binding effect to cellular activity by C ring closure and C3' modification than C2 modification in C-seco taxoids.

Keywords: drug; iii tubulin; seco taxoids; modification; seco

Journal Title: European journal of medicinal chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.