LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Targeting breast cancer stem cells by novel HDAC3-selective inhibitors.

Photo by nci from unsplash

Although histone deacetylase (HDAC) inhibitors have been known to suppress the cancer stem cell (CSC) population in multiple types of cancer cells, it remains unclear which HDAC isoforms and corresponding… Click to show full abstract

Although histone deacetylase (HDAC) inhibitors have been known to suppress the cancer stem cell (CSC) population in multiple types of cancer cells, it remains unclear which HDAC isoforms and corresponding mechanisms contribute to this anti-CSC activity. Pursuant to our previous finding that HDAC8 regulates CSCs in triple-negative breast cancer (TNBC) cells by targeting Notch1 stability, we investigated related pathways and found HDAC3 to be mechanistically linked to CSC homeostasis by increasing β-catenin expression through the Akt/GSK3β pathway. Accordingly, we used a pan-HDAC inhibitor, AR-42 (1), as a scaffold to develop HDAC3-selective inhibitors, obtaining the proof-of-concept with 18 and 28. These two derivatives exhibited high potency and isoform selectivity in HDAC3 inhibition. Equally important, they showed in vitro and/or in vivo efficacy in suppressing the CSC subpopulation of TNBC cells via the downregulation of β-catenin.

Keywords: cancer stem; hdac3 selective; breast cancer; selective inhibitors; cancer

Journal Title: European journal of medicinal chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.