LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of 4-oxo-quinoline-based CB2 PET radioligands in R6/2 chorea huntington mouse model and human ALS spinal cord tissue.

Photo by anthgrim from unsplash

The cannabinoid receptor 2 (CB2) has been implicated in a series of neurodegenerative disorders and has emerged as an interesting biological target for therapeutic as well as diagnostic purposes. In… Click to show full abstract

The cannabinoid receptor 2 (CB2) has been implicated in a series of neurodegenerative disorders and has emerged as an interesting biological target for therapeutic as well as diagnostic purposes. In the present work, we describe an improved radiosynthetic approach to obtain the previously reported CB2-specific PET radioligand [18F]RS-126 in higher radiochemical yields and molar activities. Additionally, the study revealed that prolongation of the [18F]RS-126 fluoroalkyl side chain ultimately leads to an improved stability towards mouse liver enzymes but is accompanied by a reduction in selectivity over the cannabinoid receptor 1 (CB1). Huntington-related phenotypic changes as well as striatal D2R downregulation were confirmed for the transgenic R6/2 mouse model. CB2 upregulation in R6/2 Chorea Huntington mice was observed in hippocampus, cortex, striatum and cerebellum by qPCR, however, these results could not be confirmed at the protein level by PET imaging. Furthermore, we evaluated the utility of the newly developed [11C]RS-028, a potent [18F]RS-126 derivative with increased polarity and high selectivity over CB1 in post-mortem human ALS spinal cord and control tissue. Applying in vitro autoradiography, the translational relevance of CB2 imaging was demonstrated by the specific binding of [11C]RS-028 to post-mortem human ALS spinal cord tissue.

Keywords: huntington; als spinal; cb2; human als; spinal cord

Journal Title: European journal of medicinal chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.