LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structure-activity relationships in fungal nucleobases transporters as dissected by the inhibitory effects of novel purine analogues.

Photo from wikipedia

We have previously rationally designed, synthesized and tested a number of 3-deazapurine analogues, which inhibit the ubiquitous fungal nucleobase transporter FcyB, through binding in its major substrate binding site, by… Click to show full abstract

We have previously rationally designed, synthesized and tested a number of 3-deazapurine analogues, which inhibit the ubiquitous fungal nucleobase transporter FcyB, through binding in its major substrate binding site, by specifically interacting with Asn163. Here, in an effort to further understand the molecular details of structure-activity relationships in all three major nucleobase transporters of fungi, we extend this study by designing, based on our previous experience, synthesizing and testing further 3-deazapurine analogues. We thus identify seven new compounds with relatively high affinity (19-106 μΜ) for the FcyB binding site. Importantly, four of these compounds can also efficiently inhibit AzgA, a structurally and evolutionary distinct, but functionally similar, purine transporter. Contrastingly, none of the new compounds tested had any effect on the transport activity of the uric acid-xanthine transporter UapA, albeit this being a structural homologue of AzgA. Besides the apparent importance for understanding how nucleobase transporter specificity is determined at the molecular level, our work might constitute a critical step in the design of novel purine-related antifungals.

Keywords: activity relationships; novel purine; structure activity; activity; transporter

Journal Title: European journal of medicinal chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.