Bifunctional chelators (BFCs) are covalently linked to biologically active targeting molecules and radiolabeled with radiometals. Technetium-99 m (99mTc) is the most widely used isotope in nuclear medicine because of its excellent… Click to show full abstract
Bifunctional chelators (BFCs) are covalently linked to biologically active targeting molecules and radiolabeled with radiometals. Technetium-99 m (99mTc) is the most widely used isotope in nuclear medicine because of its excellent physical properties. The objective of this study was to synthesize and characterize a novel BFC that allows for the labeling of antibodies and antibody fragments using the 99mTc(CO)3+ core which forms a very stable complex with 99mTc in the +1 oxidation sate. This study reports the synthesis of a BFC 1-pyrrolidinyl-2,5-dione-11-(bis((1-(carboxymethyl)-1H-imidazol-2-yl)methyl)amino)undecanoic acid (SAAC-CIM NHS ester), and the in vitro and in vivo evaluation of 99mTc(CO)3-SAAC-CIM-DLO6-(scFv)2 (99mTc(CO)3-DLO6-(scFv)2), a domain I/II-specific anti-epidermal growth factor receptor I (anti-EGFR) antibody fragment. The chelator allowed radiolabeling the (scFv)2 antibody fragment in very mild conditions with no significant decrease in binding to EGFR. Radiochemical yields of >50% (radiochemical purity > 95%) of the resulting anti-EGFR (scFv)2 immunoconjugate 99mTc(CO)3-DLO6-(scFv)2 was obtained. The radioimmunoconjugate was stable in histidine challenge experiments with less than 20% transchelation at 24 h after challenge in the presence of a 1500-fold excess of histidine. In vivo biodistribution of 99mTc(CO)3-DLO6-(scFv)2 indicates that the tracer was mainly cleared via renal excretion and to a lesser extent via the hepatobiliary pathway. The microSPECT imaging studies performed in mice confirmed the in vitro affinity results. The 99mTc(CO)3-DLO6-(scFv)2 shows some promising properties and warrants further investigation for imaging EGFR.
               
Click one of the above tabs to view related content.