A series of resveratrol dimer derivatives against Alzheimer's disease (AD) was obtained by structural modification and transformation using resveratrol as substrate. Biological analysis revealed that these derivatives had moderate inhibitory… Click to show full abstract
A series of resveratrol dimer derivatives against Alzheimer's disease (AD) was obtained by structural modification and transformation using resveratrol as substrate. Biological analysis revealed that these derivatives had moderate inhibitory activity against human monoamine oxidase B (hMAO-B). In particular, 3 and 7 showed the better inhibitory activity for hMAO-B (IC50 = 3.91 ± 0.23 μM, 0.90 ± 0.01 μM) respectively. Compound 3 (IC50 = 46.95 ± 0.21 μM for DPPH, 1.43 and 1.74 trolox equivalent by ABTS and FRAP method respectively), and 7 (IC50 = 35.33 ± 0.15 μM for DPPH, 1.70 and 1.97 trolox equivalent by ABTS method and FRAP method respectively) have excellent antioxidant effects. Cellular assay shown that 3 and 7 had lower toxicity and were resistant to neurotoxicity induced by oxidative toxins (H2O2, rotenone and oligomycin-A). More importantly, the selected compounds have neuroprotective effects against ROS generation, H2O2-induced apoptosis and a significant in vitro anti-inflammatory activity. The results of the parallel artificial membrane permeability assay for blood-brain barrier indicated that 3 and 7 would be predominant to cross the blood-brain barrier. In this study, mouse microglia BV2 cells were used to establish cell oxidative stress injury model with H2O2 and to explore the protective effect and mechanism of 3 and 7. In general, 3 and 7 can be considered candidates for potential treatment of AD.
               
Click one of the above tabs to view related content.