LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design, synthesis and activity of novel 2,6-disubstituted purine derivatives, potential small molecule inhibitors of signal transducer and activator of transcription 3.

Photo from wikipedia

Sustained activation of STAT3 is closely related to the cancer development, but the inhibitors for STAT3 overexpression are still in the clinical research stage. In this study, a series of… Click to show full abstract

Sustained activation of STAT3 is closely related to the cancer development, but the inhibitors for STAT3 overexpression are still in the clinical research stage. In this study, a series of 2,6-disubstituted purine derivatives were designed and synthesized, and their biological activities, as small molecule inhibitors of STAT3, were assessed. Compound PD26-TL07 exhibited remarkable antiproliferative activity against three cancer cell lines (IC50 values for HCT-116, SW480 and MDA-MB-231 were 1.77 ± 0.35, 1.51 ± 0.19, and 1.25 ± 0.38 μM, respectively). Moreover, detailed biological assays revealed that PD26-TL07 could effectively inhibited STAT3 phosphorylation, and had little inhibition to others'. The newly discovered PD26-TL07 displayed an expecting anticancer effect both in vitro and in vivo. The molecular docking models revealed that PD26-TL07 could bind to the SH2 domain of STAT3. Three additional compounds (PD26-BZ01, PD26-TL03 and PD26-AS06) were also able to inhibit this phosphorylation. This study described novel 2,6-disubstituted purine derivatives as potent anticancer agents targeting STAT3.

Keywords: disubstituted purine; purine derivatives; small molecule; molecule inhibitors; novel disubstituted; pd26 tl07

Journal Title: European journal of medicinal chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.