LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structure-based design and SAR development of novel selective polo-like kinase 1 inhibitors having the tetrahydropteridin scaffold.

Photo from wikipedia

Polo-like kinase 1 (Plk1) is a validated target for the treatment of cancer. In this report, by analyzing amino acid residue differences among the ATP-binding pockets of Plk1, Plk2 and… Click to show full abstract

Polo-like kinase 1 (Plk1) is a validated target for the treatment of cancer. In this report, by analyzing amino acid residue differences among the ATP-binding pockets of Plk1, Plk2 and Plk3, novel selective Plk1 inhibitors were designed based on BI 2536 and BI 6727, two Plk1 inhibitors in clinical studies for cancer treatments. The Plk1 inhibitors reported herein have more potent inhibition against Plk1 and better isoform selectivity in the Plk family than these two lead compounds. In addition, by introducing a hydroxyl group, our compounds have significantly improved solubility and may target specific polar residues Arg57, Glu69 and Arg134 of Plk1. Moreover, most of our compounds exhibited antitumor activities in the nanomolar range against several cancer cell lines in the MTT assay. Through this structure-based design strategy and SAR study, a few promising selective Plk1 inhibitors having the tetrahydropteridin scaffold, for example, L34, were identified and could be for further anticancer research.

Keywords: plk1; like kinase; plk1 inhibitors; polo like; structure based; novel selective

Journal Title: European journal of medicinal chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.