LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Minor chemical modifications of the aminosteroid derivative RM-581 lead to major impact on its anticancer activity, metabolic stability and aqueous solubility.

Photo by nci from unsplash

The aminosteroid (AM) RM-581 is built around a mestranol backbone and has recently emerged as this family's lead candidate, showing in vitro and in vivo potency over different types of cancer, including… Click to show full abstract

The aminosteroid (AM) RM-581 is built around a mestranol backbone and has recently emerged as this family's lead candidate, showing in vitro and in vivo potency over different types of cancer, including high fatality pancreatic cancer. To extend the structure-activity relationships (SAR) to other estrane analogs, we synthesized a focused series of RM-581 derivatives at position C3 or C2 of its steroidal core. These new AM derivatives were first tested on a large selection of prostate, breast, pancreatic and ovarian cancer cell lines. The impact of these modifications on metabolic stability (human liver microsomes) was also measured. A SAR study revealed a fine regulation of anticancer activity related to the nature of the substituent. Indeed, the addition of potential prodrug groups like acetate, sulfamate or phosphate (compounds 8, 9 and 10) at C3 of the phenolic counterpart provided better antiproliferative activities than RM-581 in breast and pancreatic cancer cell types while maintaining activity in other cancer cell lines. Also, the phosphate group was highly beneficial on water solubility. However, the bulkier carbamate prodrugs 6 (N,N-dimethyl) and 7 (N,N-diethyl) were less active. Otherwise, carbon homologation (CH2) at C2 (compound 33) was beneficial to metabolic stability and, in the meantime, this AM conserved the same anticancer activity as RM-581. However, the replacement of the hydroxy or methoxy at C3 by a hydrogen or an acetyl (compound 17 or 21b) was detrimental for anticancer activity, pointing to a crucial molecular interaction of the aromatic oxygen atom at this position. Overall, this work provided a better knowledge of the structural requirements to maintain RM-581's anticancer activity, and also identified minor structural modifications to increase both metabolic stability and water solubility, three important parameters of pharmacological development.

Keywords: cancer; activity; metabolic stability; anticancer activity

Journal Title: European journal of medicinal chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.