LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design, synthesis and biological evaluation of novel histone deacetylase1/2 (HDAC1/2) and cyclin-dependent Kinase2 (CDK2) dual inhibitors against malignant cancer.

Photo from wikipedia

In the current study, we have designed and synthesized a series of novel histone deacetylase1/2 (HDAC1/2) and cyclin-dependent kinase2 (CDK2) dual inhibitors by integrating purine-based pharmacophore into the recognition cap… Click to show full abstract

In the current study, we have designed and synthesized a series of novel histone deacetylase1/2 (HDAC1/2) and cyclin-dependent kinase2 (CDK2) dual inhibitors by integrating purine-based pharmacophore into the recognition cap group of CS055. The representative compound 14d with excellent antiproliferative activities towards five solid cancer cells, showed potent inhibitory activities against HDAC1, HDAC2 and CDK2 with IC50 values of 70.7 nM, 23.1 nM and 0.80 μM, respectively. Besides, compound 14d could effectively block the cell cycle in the G2/M phase and induce apoptosis, which might be related to increasing intracellular ROS levels. Importantly, compound 14d exhibited desirable pharmacokinetic (PK) properties with the intraperitoneal bioavailability of 50.8% in ICR mice, and potent in vivo antitumor activity in the HCT116 xenograft model. Therefore, compound 14d could be considered as a promising lead compound for the development of multitargeting anticancer agents.

Keywords: novel histone; cyclin dependent; cdk2; hdac1 cyclin; histone deacetylase1; deacetylase1 hdac1

Journal Title: European journal of medicinal chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.