Aggregation of α-synuclein (α-syn) is one of the central hypotheses for Parkinson's disease (PD), therefore, its inhibition and disaggregation is an optimistic approach for the treatment of PD. Here, we… Click to show full abstract
Aggregation of α-synuclein (α-syn) is one of the central hypotheses for Parkinson's disease (PD), therefore, its inhibition and disaggregation is an optimistic approach for the treatment of PD. Here, we report design, synthesis and in-vitro efficacy studies of a series of diphenyl triazine hybrids as potential inhibitors of α-syn fibrillogenesis. From the docking studies, we concluded that compounds A1, A2, A4, A8 and A9 display promising binding affinity with the essential residues of α-syn with binding energy values: -6.0, -7.0, -6.3, -6.6 and -6.7 kcal/mol respectively. The target compounds were synthesized using multistep organic synthesis reactions. Compounds A1, A2 A4, A8 and A9 showed a significant lowering of the α-syn fibril formation during Thioflavin-T assay and fluorescence microscopy. In addition, these compounds A1, A2, A4, A8 and A9 also proved to be good disaggregators in the pre-aggregated form of α-syn. Most of the compounds exhibited no cytotoxicity in mouse embryonic fibroblast (MEF) and human adenocarcinomic alveolar basal epithelial cells (A549) except A2. Overall, diphenyl triazine-based compounds can be further investigated for the treatment of synucleinopathies and for Lewy body dementia in which α-syn is predominantly observed.
               
Click one of the above tabs to view related content.