LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel potent bifunctional carboxylesterase inhibitors based on a polyfluoroalkyl-2-imino-1,3-dione scaffold.

Photo by diana_pole from unsplash

An expanded series of alkyl 2-arylhydrazinylidene-3-oxo-3-polyfluoroalkylpropionates (HOPs) 3 was obtained via Cu(OAc)2-catalyzed azo coupling. All were nanomolar inhibitors of carboxylesterase (CES), while moderate or weak inhibitors of acetylcholinesterase and butyrylcholinesterase.… Click to show full abstract

An expanded series of alkyl 2-arylhydrazinylidene-3-oxo-3-polyfluoroalkylpropionates (HOPs) 3 was obtained via Cu(OAc)2-catalyzed azo coupling. All were nanomolar inhibitors of carboxylesterase (CES), while moderate or weak inhibitors of acetylcholinesterase and butyrylcholinesterase. Steady-state kinetics studies showed that HOPs 3 are mixed type inhibitors of the three esterases. Molecular docking studies demonstrated that two functional groups in the structure of HOPs, trifluoromethyl ketone (TFK) and ester groups, bind to the CES active site suggesting subsequent reactions: formation of a tetrahedral adduct, and a slow hydrolysis reaction. The results of molecular modeling allowed us to explain some structure-activity relationships of CES inhibition by HOPs 3: their selectivity toward CES in comparison with cholinesterases and the high selectivity of pentafluoroethyl-substituted HOP 3p to hCES1 compared to hCES2. All compounds were predicted to have good intestinal absorption and blood-brain barrier permeability, low cardiac toxicity, good lipophilicity and aqueous solubility, and reasonable overall drug-likeness. HOPs with a TFK group and electron-donor substituents in the arylhydrazone moiety were potent antioxidants. All compounds possessed low cytotoxicity and low acute toxicity. Overall, a new promising type of bifunctional CES inhibitors has been found that are able to interact with the active site of the enzyme with the participation of two functional groups. The results indicate that HOPs have the potential to be good candidates as human CES inhibitors for biomedicinal applications.

Keywords: novel potent; carboxylesterase inhibitors; bifunctional carboxylesterase; inhibitors based; based polyfluoroalkyl; potent bifunctional

Journal Title: European journal of medicinal chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.