LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design, synthesis and biological evaluation of novel o-aminobenzamide derivatives as potential anti-gastric cancer agents in vitro and in vivo.

Photo from wikipedia

Although gastric cancer has become a major public health problem, oral agents applied in clinics for gastric cancer therapy are scarce. Therefore, to explore new oral chemical entities with high… Click to show full abstract

Although gastric cancer has become a major public health problem, oral agents applied in clinics for gastric cancer therapy are scarce. Therefore, to explore new oral chemical entities with high efficiency and low toxicity, 41 o-aminobenzamide derivatives based on the scaffolds of MS-275 and SAHA were designed, synthesized, and evaluated for their anti-gastric cancer abilities in vitro and in vivo. Structure-activity relationships were discussed, leading to the identification of compounds F8 (IC50 = 0.28 μM against HGC-27 cell) and T9 (IC50 = 1.84 μM against HGC-27 cell) with improved cytotoxicity, anti-gastric cancer proliferation potency, induction of cell apoptosis and cell cycle arrest ability, inhibition of cell migration and invasion. What is worth mentioning is that compound F8 was more efficient and less toxic than the positive drug capecitabine in vivo on the HGC-27-xenograft model. Meanwhile, compound F8 exhibited suitable pharmacokinetic properties and less acute toxicity (LD50 > 1000 mg/kg). Besides, western blotting analysis, IHC analysis, differentially expressed proteins analysis and ABPP experiment indicated that compound F8 could modulate molecular pathways involved in apoptosis and cell cycle progression. Consequently, compound F8 is a strong candidate for the development of human gastric cancer therapy.

Keywords: vitro vivo; gastric cancer; cancer; cell; aminobenzamide derivatives; anti gastric

Journal Title: European journal of medicinal chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.