LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Discovery and computational studies of 2-phenyl-benzoxazole acetamide derivatives as promising P2Y14R antagonists with anti-gout potential.

Photo by alexkixa from unsplash

The P2Y14 nucleotide receptor, a subtype of P2Y receptors, is implicated in many human inflammatory diseases. Based on the identification of favorable residues of two screening hits in the almost… Click to show full abstract

The P2Y14 nucleotide receptor, a subtype of P2Y receptors, is implicated in many human inflammatory diseases. Based on the identification of favorable residues of two screening hits in the almost symmetrical P2Y14 binding domain, we describe the structural optimization of previously identified virtual screening hits 6 and 7 that result in the development of P2Y14R antagonists with a novel 2-phenyl-benzoxazole acetamide chemical scaffold. Notably, compound 52 showed potent P2Y14R antagonistic activity (IC50 = 2 nM), and a stronger inhibitory effect on MSU-induced inflammatory in vitro, better than a previously described P2Y14R antagonist PPTN. In vivo evaluation demonstrated that compound 52 also had satisfactory inhibitory activity on the inflammatory response of gout flares in mice. Moreover, P2Y14R antagonist 52 decreased paw swelling and inflammatory cell infiltration through cAMP/NLRP3/GSDMD signaling pathways in MSU-induced acute gouty arthritis mice. The discussions on the binding mechanism that employ MM/GBSA free energy calculations/decompositions also provide some useful clues for further structural designing of compound 52. Taken together, 2-phenyl-benzoxazole acetamide derivative 52 with potent P2Y14R antagonistic activity and in vivo potency could be a promising strategy for gout therapy and deserves further optimization.

Keywords: benzoxazole acetamide; p2y14r antagonists; computational studies; phenyl benzoxazole; discovery computational

Journal Title: European journal of medicinal chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.