LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sugar nucleotide regeneration system for the synthesis of Bi- and triantennary N-glycans and exploring their activities against siglecs.

Photo from wikipedia

Enzymatic synthesis that is commenced by the sugar nucleotide regeneration system (SNRS) protocol can minimize 1) the consumption of exorbitant sugar nucleotides, 2) the amount of transferases required, and 3)… Click to show full abstract

Enzymatic synthesis that is commenced by the sugar nucleotide regeneration system (SNRS) protocol can minimize 1) the consumption of exorbitant sugar nucleotides, 2) the amount of transferases required, and 3) byproduct feedback inhibition. In this study, LacNAc extensions/modifications of the N-linked mannose core were carried out efficiently with SNRS with high yields and purities on all branches in a uniform manner. In addition, we demonstrate that with SNRS, bacterial glycosyltransferases exhibit a wide acceptor tolerance for bi- and triantennary mannose core structures as substrates for target oligosaccharides. The synthesized small library of mannose core-based glycans and linear O-glycans were screened for their binding affinity against h-Siglecs 2, 4, 7, 9, 14, 15, and m-Siglec-15 to explore their structure-based binding preferences. Microarray data revealed that each Siglec showed few distinct yet overlapping specificities. An increase in branching from mono to di or tri antennary did not necessarily lead to increasing affinity. Glycans with the disialoside sequence α(2,3)α(2,8)/α(2,6)α(2,8) showed high specificity and affinity for Siglec-7, and sLex α(2,3) exhibited a strong affinity for Siglec-9. Explicit recognition of α(2,6)α(2,3)- linear and α(2,3)α(2,6)-branched glycans by Siglecs-2, 4, and 15, respectively, suggests that these structures can act as potential candidates for the further development of high-affinity ligands.

Keywords: nucleotide regeneration; affinity; regeneration system; synthesis; sugar nucleotide

Journal Title: European journal of medicinal chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.