Human imprinting disorders cause a range of dysmorphic and neurocognitive phenotypes, and they may elude traditional molecular diagnosis such exome sequencing. The discovery of novel disorders related to imprinted genes… Click to show full abstract
Human imprinting disorders cause a range of dysmorphic and neurocognitive phenotypes, and they may elude traditional molecular diagnosis such exome sequencing. The discovery of novel disorders related to imprinted genes has lagged behind traditional Mendelian disorders because current diagnostic technology, especially unbiased testing, has limited utility in their discovery. To identify novel imprinting disorders, we reviewed data for every human gene hypothesized to be imprinted, identified each mouse ortholog, determined its imprinting status in the mouse, and analyzed its function in humans and mice. We identified 17 human genes that are imprinted in both humans and mice, and have functional data in mice or humans to suggest that dysregulated expression would lead to an abnormal phenotype in humans. These 17 genes, along with known imprinted genes, were preferentially flagged 538 clinical exome sequencing tests. The identified genes were: DIRAS3 [1p31.3], TP73 [1p36.32], SLC22A3 [6q25.3], GRB10 [7p12.1], DDC [7p12.2], MAGI2 [7q21.11], PEG10 [7q21.3], PPP1R9A [7q21.3], CALCR [7q21.3], DLGAP2 [8p23.3], GLIS3 [9p24.2], INPP5F [10q26.11], ANO1 [11q13.3], SLC38A4 [12q13.11], GATM [15q21.1], PEG3 [19q13.43], and NLRP2 [19q13.42]. In the 538 clinical cases, eight cases (1.7%) reported variants in a causative known imprinted gene. There were 367/758 variants (48.4%) in imprinted genes that were not known to cause disease, but none of those variants met the criteria for clinical reporting. Imprinted disorders play a significant role in human disease, and additional human imprinted disorders remain to be discovered. Therefore, evolutionary conservation is a potential tool to identify novel genes involved in human imprinting disorders and to identify them in clinical testing.
               
Click one of the above tabs to view related content.