LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bouchardatine suppresses rectal cancer in mice by disrupting its metabolic pathways via activating the SIRT1-PGC-1α-UCP2 axis.

Photo by nci from unsplash

Cancer metabolism is an attractive target of the therapeutic strategy for cancer. The present study identified bouchardatine (Bou) as a potent suppressor of rectal cancer growth by cycle-arresting independent of… Click to show full abstract

Cancer metabolism is an attractive target of the therapeutic strategy for cancer. The present study identified bouchardatine (Bou) as a potent suppressor of rectal cancer growth by cycle-arresting independent of apoptosis. In cultured HCT-116 rectal cancer cells, Bou increased glucose uptake/oxidation and capacity of mitochondrial oxidation. These effects were associated with an upregulation of uncoupling protein 2 (UCP2) and the activation of its upstream Sirtuin 1 (SIRT1)/(Liver kinase B1) LKB1- (Adenosine monophosphate-activated protein kinase) AMPK axis. The pivotal role of UCP2 in the cancer-suppressing effect was demonstrated by overexpressing UCP2 in HCT-116 cells with similar metabolic effects to those produced by Bou. Interestingly, Bou activated peroxisome proliferators activated receptor γ coactivator 1α (PGC-1α) and recruited it to the promoter of UCP2 in HCT-116 cells along with deacetylation (thus activation) by SIRT1. The requirement of SIRT1 for the cancer-suppressing effect through the PGC-1α-UCP2 was confirmed by the reciprocal responses to Bou in HCT-116 with defected and overexpressed SIRT1. Whereas knockdown, mutation or pharmacological inhibition of SIRT1 all abolished Bou-induced deacetylation/activation of PGC-1α, the opposing effects were observed after overexpressing SIRT1. In mice, administration of Bou (50 mg/kg) also suppressed the growth of rectal cancer associated with increases the UCP2 expression and mitochondria capacity in the tumor. Collectively, our findings suggest that Bou has a therapeutic potential for the treatment of rectal cancer by disrupting the metabolic path of cancer cells via activating the PGC-1α-UCP2 axis with SIRT1 as its primary target.

Keywords: sirt1; hct 116; rectal cancer; pgc ucp2; cancer

Journal Title: European journal of pharmacology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.