LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tanshinone IIa protects retinal endothelial cells against mitochondrial fission induced by methylglyoxal through glyoxalase 1.

Photo by tylercallahan from unsplash

Advanced glycation end products (AGEs) play an important role in the onset of diabetic retinopathy. Therefore, in the current study, we investigate whether and how Tanshinone IIa (Tan IIa) from… Click to show full abstract

Advanced glycation end products (AGEs) play an important role in the onset of diabetic retinopathy. Therefore, in the current study, we investigate whether and how Tanshinone IIa (Tan IIa) from Salvia miltiorrhiza protects bovine retinal endothelial cells (BRECs) against methylglyoxal (MGO) mediated cell dysfunction. The results showed that MGO reduced cell viability in dose dependent manner. The treatment of Tan IIa (50 μM) significantly improved cell viability induced by MGO in BRECs. MGO increased cellular reactive oxygen species formation and cellular nitric oxide (NO) level; enhanced nox1 and iNOS mRNA levels; inhibited prdx1 mRNA level. The treatment of Tan IIa effectually ameliorated cellular oxidative stress. Exposure of MGO resulted in mitochondrial fission and decrease of opa1 and mfn1. No significant difference in mRNA levels of mfn2 and drp1 was detected between MGO and medium. Tan IIa reduced mitochondrial fragmentation, enhanced the mRNA levels of mfn1 and opa1 in MGO cultured BRECs. The short time exposure of cellular antioxidatants, dimethylthiourea (10 mM) and tiron (10 mM) had no effect on mitochondrial fission although they ameliorated cellular reactive oxygen species level. Moreover, overexpression of glyoxalase 1 (GLO1) increased key proteins of mitochondrial fusion, including opa1 and mfn1 in BRECs cultured with MGO. However, inhibition of GLO1 by siRNA abolished the effect of Tan IIa on induction of mitochondrial fusion in MGO cultured BRECs. In conclusion, MGO caused the injury of retinal endothelial cells through induction of mitochondrial dysfunction and mitochondrial fission, the treatment of Tan IIa ameliorated mitochondrial dysfunction and fission induced by AGEs through enhancing GLO1.

Keywords: mgo; tan iia; mitochondrial fission; iia; retinal endothelial

Journal Title: European journal of pharmacology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.