Minocycline functions as a therapeutic drug in different diseases because of its cytoprotective properties. In the present study, we examined the potential of minocycline to decrease the islet loss in… Click to show full abstract
Minocycline functions as a therapeutic drug in different diseases because of its cytoprotective properties. In the present study, we examined the potential of minocycline to decrease the islet loss in pre-transplantation culture stage. Pancreatic islets were isolated from the deceased donors and treated by 0, 2, 10, and 20 μM minocycline for 24 and 72 h. After that, the incubated islets were evaluated for viability and function. Apoptosis markers including Bax, Bcl2, and caspase-3 were determined at gene and protein level. On the other hand, TUNEL assay was used to confirm apoptosis. The functionality of the islets was investigated using glucose-induced insulin and c-peptide secretion assay. After 72 h of incubation, the viability of human islet was drastically decreased, whereas supplementation with minocycline inhibited the cells death. In this regard, the expression of Bax and active Caspase-3 was downregulated, whereas the expression of Bcl2 was upregulated. These consequences suggest that pancreatic islets undergo apoptosis in vitro and minocycline can decelerate or inhibit this process. Our findings identified minocycline as a cytoprotective molecule for preventing human islets death in pre-transplantation culture.
               
Click one of the above tabs to view related content.