LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chronic ethanol consumption enhances inducible endothelium-dependent hyperpolarizing factor-mediated relaxation in the rat artery.

Photo by enginakyurt from unsplash

The inducible endothelium-dependent hyperpolarizing factor (iEDHF) pathway is activated as a compensatory response to adverse changes in the body. It causes vasorelaxation and maintains circulatory homeostasis in the organs. Small… Click to show full abstract

The inducible endothelium-dependent hyperpolarizing factor (iEDHF) pathway is activated as a compensatory response to adverse changes in the body. It causes vasorelaxation and maintains circulatory homeostasis in the organs. Small to moderate quantities of ethanol enhance vascular relaxation. However, its mechanism and the involvement of the iEDHF pathway in this process are unknown. Therefore, we studied iEDHF-mediated, acetylcholine-induced, endothelium-dependent relaxation in the superior mesenteric arteries (SMAs) of rats chronically fed ethanol. Rats were administered a standard diet (S-Control group), Lieber's control diet (L-Control group), or Lieber's ethanol diet (EtOH group). SMA relaxation was assessed by isometric tension measurements. Arachidonate 15-lipoxygenase (ALOX15) and soluble epoxide hydrolase (sEH) were determined by immunoblot. Acetylcholine-induced, endothelium-dependent relaxation was significantly greater in the EtOH than the control groups. These differences persisted after PGI2 and NO blockade. Thus, the increase in acetylcholine-induced relaxation was EDHF-mediated. In the EtOH group, however, it was prevented by iEDHF inhibitors. ALOX15 and sEH protein expression levels were higher in the EtOH than the L-Control group. The increase in acetylcholine-induced relaxation by chronic ethanol consumption was mediated by the iEDHF pathway. This mechanism may compensate for the blood pressure elevation induced by ethanol. This study suggests that iEDHF is induced during proper drinking and may help prevent the onset of cardiovascular conditions.

Keywords: inducible endothelium; relaxation; endothelium dependent; group; dependent hyperpolarizing; hyperpolarizing factor

Journal Title: European journal of pharmacology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.