LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Therapeutic drugs modulate ATP-Binding cassette transporter-mediated transport of amyloid beta(1-42) in brain microvascular endothelial cells.

Photo by illiyapresents from unsplash

Deposition of amyloid-β peptide (Aβ(1-42)) is a hallmark of Alzheimer's disease. Clearance of Aβ(1-42), across the blood-brain barrier (BBB), is mediated by ATP-binding Cassette (ABC) efflux transporters. Many therapeutic drugs… Click to show full abstract

Deposition of amyloid-β peptide (Aβ(1-42)) is a hallmark of Alzheimer's disease. Clearance of Aβ(1-42), across the blood-brain barrier (BBB), is mediated by ATP-binding Cassette (ABC) efflux transporters. Many therapeutic drugs inhibit ABC transporters, but little is known of the effect of therapeutic drugs on Aβ(1-42) transport across BBB endothelial cells. The effects of selected, widely prescribed, therapeutic drugs on ABCB1, ABCC5 and ABCG2 activities were determined by measuring intracellular levels of calcein, GS-MF, and Hoechst 33342 respectively in primary porcine brain endothelial cells (PBECs). The ability of ABCB1, ABCC5 and ABCG2 to transport Aβ(1-42) was determined using fluorescent Aβ(1-42). The ability of the ABCB1, ABCC5 and ABCG2 inhibitor telmisartan to modify transcellular Aβ(1-42) transport was investigated using PBEC monolayers housed in Transwell® inserts. Treatment of PBECs with ABC transporter inhibitory drugs (indomethacin, olanzapine, chlorpromazine, telmisartan, pantoprazole, quinidine, sulfasalazine and nefazodone) increased Aβ(1-42) intracellular accumulation. Inhibition of ABCB1, ABCC5 and ABCG2 by telmisartan increased Aβ(1-42) transport in the apical to basal direction and reduced its transport in basal to apical direction in PBEC monolayers. ABCB1, ABCC5 and ABCG2 mediate the efflux transport of Aβ(1-42) in BBB endothelial cells. Inhibition of ABC transporters by therapeutic drugs, at plasma concentrations, could decrease Aβ(1-42) clearance from brain, across BBB endothelial cells into blood, and potentially influence levels of the Aβ(1-42) peptide within the brain.

Keywords: abcb1 abcc5; transport; abcc5 abcg2; endothelial cells; therapeutic drugs; brain

Journal Title: European journal of pharmacology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.