Vesicular acetylcholine transporter plays a crucial role in the cholinergic system, and its alterations is implicated in several neurodegenerative disorders. We recently developed a PET imaging tracer [18F]VAT to target… Click to show full abstract
Vesicular acetylcholine transporter plays a crucial role in the cholinergic system, and its alterations is implicated in several neurodegenerative disorders. We recently developed a PET imaging tracer [18F]VAT to target VAChT in vivo with high affinity and selectivity. Here we report in vitro characterization of [3H]VAT, a tritiated counterpart of [18F]VAT. Using human VAChT-rich cell membrane extracts, a saturated binding curve was obtained for [3H]VAT with Kd = 6.5 nM and Bmax = 22.89 pmol/mg protein. In the [3H]VAT competition-binding assay with a panel of CNS ligands, binding inhibition of [3H]VAT was observed using VAChT ligands, the Ki values ranged from 5.41 to 33.3 nM. No inhibition was detected using a panel of other CNS ligands. In vitro [3H]VAT autoradiography of rat brain sections showed strong signals in the striatum, moderate to high signals in vermis, thalamus, cortex, and hippocampus, and weak signals in cerebellum. Strong [3H]VAT ARG signals were also observed from striatal sections of normal nonhuman primates and human brains. In the competitive [3H]VAT ARG with human striatal sections, strong ARG signals in caudate and putamen were blocked significantly by either VAChT ligand TZ659 or (-)-vesamicol, but not by the σ1 receptor ligand Yun-122. ARG study also found that signal in the striatal sections from PSP human brains was lower than normal human brains. These data provide solid evidence supporting [18F]VAT as a suitable PET radiotracer for quantitative assessment of VAChT levels in vivo.
               
Click one of the above tabs to view related content.